Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements

نویسندگان

  • M. Zhang
  • E. A. Olson
  • A. T. Kwan
  • S. L. Lai
  • T. Wisleder
  • J. E. Greene
  • L. H. Allen
چکیده

The melting behavior of 0.1–10-nm-thick discontinuous indium films formed by evaporation on amorphous silicon nitride is investigated by an ultrasensitive thin-film scanning calorimetry technique. The films consist of ensembles of nanostructures for which the size dependence of the melting temperature and latent heat of fusion are determined. The relationship between the nanostructure radius and the corresponding melting point and latent heat is deduced solely from experimental results ~i.e., with no assumed model! by comparing the calorimetric measurements to the particle size distributions obtained by transmission electron microscopy. It is shown that the melting point of the investigated indium nanostructures decreases as much as 110 K for particles with a radius of 2 nm. The experimental results are discussed in terms of existing melting point depression models. Excellent agreement with the homogeneous melting model is observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements.

For the first time, the latent heat of fusion DHm for Sn particles formed by evaporation on inert substrate with radii ranging from 5 to 50 nm has been measured directly using a novel scanning nanocalorimeter. A particle-size-dependent reduction of DHm has been observed. An “excluded volume” is introduced to describe the latent heat of fusion from the enhanced surface melting of small particles...

متن کامل

Size-dependent melting of self-assembled indium nanostructures.

We have measured the melting temperature of nanoscale indium islands on a WSe(2) substrate using perturbed angular correlations combined with scanning tunneling microscopy. The indium islands are self-assembled nanostructures whose diameter can vary between about 5 and 100 nm, depending on deposition conditions. The melting point decreases due to surface energies as the islands get smaller. Thi...

متن کامل

Heat capacity measurements of Sn nanostructures using a thin-film differential scanning calorimeter with 0.2 nJ sensitivity

We have developed a new thin-film differential scanning calorimetry technique that has extremely high sensitivity of 0.2 nJ. By combining two calorimeters in a differential measurement configuration, we have measured the heat capacity and melting process of Sn nanostructures formed via thermal evaporation with deposition thickness down to 1 Å. The equivalent resolution of the calorimeter is 1 n...

متن کامل

Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements

This work investigates the thermodynamic properties of small structures of Al using an ultrasensitive thin-film differential scanning calorimeter. Al thin films were deposited onto a Si3N4 surface via thermal evaporation over a range of thicknesses from 6 to 50 Å. The Al films were discontinuous and formed nanometer-sized clusters. Calorimetry measurements demonstrated that the melting point of...

متن کامل

Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of coll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000